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Random Experiment

A random experiment is an action or process that leads to one of
several possible outcomes.

Example 1:

Experiment: Toss a coin.
Outcomes: Heads and tails.
Experiment: Measure the time to assemble a computer.
Outcomes: Positive numbers.
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Sample Spaces

The set of all possible outcomes of a random experiment is called
the sample space of the experiment, denoted as S.
A sample space is often defined based on the objectives of the
study.

Example 2: Tossing a die. The sample space is

S = {1, 2, 3, 4, 5, 6}.



Example 3: Tossing a coin three times. If the objective of the study is
to consider whether the coin is heads or tails, the sample space is

S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}.

If the objective of the study is to consider the number of heads that
appear, the sample space is

S = {0, 1, 2, 3}.

Events

An event is a subset of the sample space of a random experiment.
Impossible event: ∅
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Basic Set Operations

The union of the two events A and B, denoted by A ∪B, is the
event that consists of all outcomes that are in A or B.
The intersection of the two events A and B, denoted by A ∩B, is
the event that consists of all outcomes that are common to A and
B.
The complement of the event A in the sample space S, denoted by
A′ or A, is the set of outcomes in S that are not in A.



Example 4: Let Ai, i = 1, 2, 3, denote the event that component i is
working. Express in terms of A1, A2, A3 the following events:
1) Only component 2 is working.
2) All three components are working.
3) None is working.
4) At least one is working.
5) Exactly two are working.



Mutually Exclusive Events

Two events A and B are called to be mutually exclusive if

A ∩B = ∅

A collection of events E1, E2, . . . , Ek is said to be mutually
exclusive if for all pairs,

Ei ∩ Ej = ∅
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1.2.1 Classical Definition of Probability

Probability is used to quantify the chance that an outcome of a
random experiment will occur.
For a sample space consists of N possible outcomes that are
equally likely, the probability of an event A, denoted as P (A), is
defined by

P (A) =
The number of outcomes in A

The number of possible outcomes
=

n(A)

N
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Example 5: A deck of playing cards is thoroughly shuffled and a card
is drawn from the deck.
a) What is the probability that the card drawn is the ace of

diamonds?
b) What is the probability that the card drawn is a ten?
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Example 6: A message can follow different paths through servers on a
network. The sender’s message can go to one of five servers for the first
step, each of them can send to five servers at the second step, each of
which can send to four servers at the third step, and then the message
goes to the recipient’s server.
(a) How many paths are possible?
(b) If all paths are equally likely, what is the probability that a

message passes through the first of four servers at the third step?



1.2.2 Relative Frequency Definition of Probability

Consider a sequence of repetitions of the same experiment under
identical conditions. Let nA denote the number of occurrences of
an event A. The ratio fn(A) =

nA

n
is called the relative frequency

of occurrences of the event A.
The probability of A is defined by

P (A) = lim
n→∞

fn(A).

14 / 34
Nguyen Thi Minh Tam Chapter 1: Introduction to Probability



1.2.3 Properties of Probability

Basic Properties of Probability

0 ≤ P (A) ≤ 1

P (∅) = 0, P (S) = 1

Addition Rules

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)

− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
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Remark:

If A and B are mutually exclusive events, then

P (A ∪B) = P (A) + P (B)

If E1, E2, . . . , Ek are mutually exclusive events, then

P (E1 ∪ E2 ∪ . . . ∪ Ek) = P (E1) + P (E2) + . . .+ P (Ek)

P (A) + P (A′) = 1
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Example 7: The probability that a person stopping at a gas station
will ask to have the tires checked is 0.12, the probability that he or she
will ask to have the oil checked is 0.29, and the probability that he or
she will ask to have them both checked is 0.07.
a) What is the probability that a person stopping at this gas station

will have the tires or the oil checked?
b) What is the probability that a person stopping at this gas station

will have neither the tires nor the oil checked?
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1.3.1 Conditional Probability

Definition

The conditional probability of B given A, denoted as P (B|A), is the
probability that the event B occurs given that the event A has already
occurred.

Example 8: A lot of 100 semiconductor chips contains 20 that are
defective. Two are selected randomly, without replacement, from the
lot.
a) What is the probability that the second one selected is defective

given that the first one was defective?
b) What is the probability that both are defective?



Formula for Conditional Probability

If P (A) > 0, then

P (B|A) =
P (A ∩B)

P (A)

Example 9: It is thought that 30 % of all people in the United States
are obese, that 3 % suffer from diabetes, and 31 % are obese or suffer
from diabetes. What is the probability that a randomly selected person
a) Have both obese and diabetes?
b) Is diabetic given that he/she is obese?
c) Is diabetic but is not obese?
d) Is diabetic given that he/she is not obese?



1.3.2 Multiplication Rule

Multiplication Rule

P (AB) = P (A)P (B|A)
P (A1A2 . . . An) = P (A1)P (A2|A1) . . . P (An|A1A2 . . . An−1)

Example 10: Suppose that P (A|B) = 0.4 and P (B) = 0.5. Determine
the following:
(a) P (A ∩B)

(b) P (A′ ∩B)
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Example 11: Suppose that 29% of Internet users download music
files, and 67% of downloaders say they do not care if the music is
copyrighted. What is the probability that an Internet user downloads
music and does not care about copyright?
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Independence (two events)

Two events A and B are independent if any one of the following
equivalent statements is true:
(1) P (A|B) = P (A)

(2) P (B|A) = P (B)

(3) P (A ∩B) = P (A)P (B)

Remark:

Two events are independent if the probability of one event is not
affected by the occurrence of the other event.
If A and B are independent events, then so are events A and B′,
events A′ and B, and events A′ and B′.
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Independence (multiple events)

The events E1, E2, . . . , En are independent if and only if for any subset
of these events Ei1 , Ei2 , . . . , Eik ,

P (Ei1 ∩ Ei2 ∩ . . . ∩ Eik) = P (Ei1)P (Ei2) . . . P (Eik)

Example 12: The following circuit operates if and only if there is a
path of functional devices from left to right. The probability that each
device functions is as shown. Assume that the probability that a device
is functional does not depend on whether or not other devices are
functional. What is the probability that the circuit operates?
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1.3.3 Total Probability Rule

Total Probability Rule (two event)

For any events A and B,

P (B) = P (A)P (B|A) + P (A′)P (B|A′)
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Example 13: The probability is 1% that an electrical connector that
is kept dry fails during the warranty period of a portable computer. If
the connector is ever wet, the probability of a failure during the
warranty period is 5%. If 90% of the connectors are kept dry and 10%
are wet, what proportion of connectors fail during the warranty period?
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Definition

A collection of events E1, E2, . . . , Ek is said to be exhaustive if

E1 ∪ E2 ∪ . . . ∪ Ek = S

Total Probability Rule (multiple events)

If E1, E2, . . . , Ek are k mutually exclusive and exhaustive events, then

P (B) = P (E1)P (B|E1) + P (E2)P (B|E2) + . . .+ P (Ek)P (B|Ek)
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Example 14: The edge roughness of slit paper products increases as
knife blades wear. Only 1% of products slit with new blades have rough
edges, 3% of products slit with blades of average sharpness exhibit
roughness, and 5% of products slit with worn blades exhibit roughness.
If 25% of the blades in manufacturing are new, 60% are of average
sharpness, and 15% are worn, what is the proportion of products that
exhibit edge roughness?
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1.3.4 Bayes’ Theorem

Bayes’ Theorem

If E1, E2, . . . , Ek are mutually exclusive and exhaustive events and B is
any event, then

P (Ei|B) =
P (Ei)P (B|Ei)

P (E1)P (B|E1) + P (E2)P (B|E2) + . . .+ P (Ek)P (B|Ek)

for P (B) > 0.

Remark: P (Ei|B) =
P (Ei)P (B|Ei)

P (B)
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Example 15: Customers are used to evaluate preliminary product
designs. In the past, 95% of highly successful products received good
reviews, 60% of moderately successful products received good reviews,
and 10% of poor products received good reviews. In addition, 40% of
products have been highly successful, 35% have been moderately
successful, and 25% have been poor products.
(a) What is the probability that a product attains a good review.
(b) If a new design attains a good review, what is the probability that

it will be a highly successful product?
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Sequence of Bernoulli Trials

A sequence of Bernoulli trials is a sequence of independent trials,
repeated under identical conditions, where each trial has two possible
outcomes, labeled as “success” and “failure”.

Bernoulli Formula

Consider a sequence of n Bernoulli trials. If the probability of a success
in each trial is p (0 < p < 1), then the probability of exactly k successes
in n trials is

Pn(k) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n,
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Example 16: The probability that a lab specimen contains high levels
of contamination is 0.1. Five samples are checked, and the samples are
independent. What is the probability that
(a) none contains high levels of contamination?
(b) exactly one contains high levels of contamination?
(c) at least one contains high levels of contamination?
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Most Likely Number of Successes

Consider a sequence of n Bernoulli trials with a success probability p.
The most likely number of successes is the integer m satisfying

(n+ 1)p− 1 ≤ m ≤ (n+ 1)p.

Example 17: A multiple choice test contains 50 questions, each with
four answer. Assume a student just guesses at each question. Find the
most likely number of questions answered correctly.
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2.1.1 Definition of Random Variables

Definition

A random variable is a function that assigns a real number to each
outcome in the sample space of a random experiment.

A random variable is denoted by an uppercase letter such as X.
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Discrete and Continuous Random Variables

A discrete random variable is a random variable with a finite (or
countably infinite) range.

A continuous random variable is a random variable with an
interval of real numbers for its range.

Example 1: A group of 10,000 people are tested for a gene called
Ifi202 that has been found to increase the risk for lupus. Let X be the
number of people who carry the gene ⇒ X is a discrete random
variable, X can take on the values 0, 1, 2, ..., 10000.
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Example 2: Let Y be the number of surface flaws in a large coil of
galvanized steel ⇒ Y is a discrete random variable, Y can take on the
values 0, 1, 2, ...

Example 3: Let Z be the outside diameter of a machined shaft ⇒ Z
is a continuous random variable.
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Independent Random Variables

Two discrete random variables X and Y are called independent if
for all x, y,

P (X = x, Y = y) = P (X = x)P (Y = y).

Two continuous random variables X and Y are called independent
if for all x, y,

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).
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2.1.2 Probability Distributions and Probability Mass
Function

A probability distribution is a table, formula, or graph that describes
the values of a random variable and the probability associated with
these values.

Discrete Probability Distribution

For a discrete random variable, the distribution is often specified by
just a list of the possible values along with the probability of
occurrence of each value.

X x1 x2 ... xn
P p1 p2 ... pn
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Remark:

pi = P (X = xi) ∀i = 1, . . . , n.

p1 + p2 + . . .+ pn = 1.

Example 4: A shipment of 10 similar computers to a retail outlet
contains 3 that are defective. A school makes a random purchase of 2
of these computers. Let X be the number of defective computers. Find
the probability distribution of the random variable X.
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Probability Mass Function

The probability mass function of a discrete random variable X,
denoted as pX(x), is a function defined by

pX(x) = P (X = x), x ∈ R.
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Properties of the Probability Mass Function

If X is a discrete random variable with possible values x1, x2, . . . , xn,
then

(1) pX(xi) > 0 ∀i = 1, 2, . . . , n

(2) pX(x1) + pX(x2) + . . .+ pX(xn) = 1

Example 5: An assembly consists of two mechanical components.
Suppose that the probabilities that the first and second components
meet specifications are 0.95 and 0.98. Assume that the components are
independent. Determine the probability mass function of the number
of components in the assembly that meet specifications.
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2.1.3 Cumulative Distribution Functions

Definition

The cumulative distribution function of a random variable X, denoted
as FX(x), is a function defined by

FX(x) = P (X ≤ x).

Example 6: Determine the cumulative distribution function of the
random variable in Example 4.
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Remark: If X be a discrete random variable with possible values
x1, x2, . . . , xn, then

FX(x) =



0 if x < x1,
pX(x1) if x1 ≤ x < x2,
. . .
pX(x1) + . . .+ pX(xi−1) if xi−1 ≤ x < xi,
. . .
1 if x ≥ xn



Properties of the Cumulative Distribution Function

1) 0 ≤ FX(x) ≤ 1

2) FX(−∞) = lim
x→−∞

FX(x) = 0,

FX(+∞) = lim
x→+∞

FX(x) = 1

3) P (a < X ≤ b) = FX(b)− FX(a)

4) FX(x) is a nondecreasing function.

5) FX(x) is a continuous function from the right.
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2.1.4 Probability Density Functions

Definition

Let X be a continuous random variable with the cumulative
distribution function FX(x). If there exists a nonnegative function
fX(x) such that

FX(x) =

∫ x

−∞
fX(t)dt, ∀x ∈ R

then fX(x) is called the probability density function of X.
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Properties of the Probability Density Function

1) fX(x) ≥ 0, ∀x ∈ R
2) fX(x) = F ′

X(x) if the derivative exists.

3) P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b)

= P (a < X < b) =

∫ b

a
fX(x)dx

4)

∫ +∞

−∞
fX(x)dx = 1
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Example 7: Let X be a random variable with the probability density
function

fX(x) =

{
0 if x ≤ 2
k

x2
if x > 2

a) Determine k.

b) Find the cumulative distribution function FX(x).

c) Calculate P (1 < X ≤ 10|X > 4).
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Example 8: The probability density function of the time to failure of
an electronic component in a copier (in hours) is

fX(x) = e−x/1000/1000 for x > 0.

Determine the probability that

(a) A component lasts more than 3000 hours before failure.

(b) A component fails in the interval from 1000 to 2000 hours.

(c) A component fails before 1000 hours.

(d) Determine the number of hours at which 10% of all components
have failed.
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2.2.1 Mean of a Random Variable

Definition

The mean or expected value of a random variable X, denoted by
E(X), is defined as follows:

If X a discrete random variable with possible values x1, x2, . . . , xn,
then

E(X) =

n∑
i=1

xipX(xi).

If X a discrete random variable with possible values x1, x2, . . .,
then

E(X) =

∞∑
i=1

xipX(xi),

provided that the series

∞∑
i=1

|xi|pX(xi) is convergent.
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If X is a continuous random variable with probability density
function fX(x), then

E(X) =

∫ ∞

−∞
xfX(x)dx,

provided that the integral

∫ ∞

−∞
|x|fX(x)dx is convergent.
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Example 9: The number of pizzas delivered to university students
each month is a random variable X with the following probability
distribution.

X 0 1 2 3

P 0.1 0.3 0.4 0.2

Determine the mean of X.
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Properties of the Mean

1) E(C) = C, where C is a constant.

2) E(kX) = kE(X), where k is a constant.

3) E(X + Y ) = E(X) + E(Y ).

4) E(k1X1+k2X2+. . .+knXn) = k1E(X1)+k2E(X2)+. . .+knE(Xn),
where k1, k2, . . . , kn are constants.

5) If X,Y are independent random variables, then

E(XY ) = E(X)E(Y ).
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Mean of a Function of a Random Variable

Let h(x) be a function.

If X is a discrete random variable with possible values
x1, x2, . . . , xn, then

E[h(X)] =

n∑
i=1

h(xi)pX(xi).

If X is a continuous random variable with the probability density
function fX(x), then

E[h(X)] =

∫ ∞

−∞
h(x)fX(x)dx
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Example 10: The probability density function of the weight of
packages delivered by a post office is

f(x) = 70/(69x2) for 1 < x < 70 pounds

(a) Determine the mean of the weight of packages.

(b) If the shipping cost is $2.5 per pound, what is the average
shipping cost of a package?
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2.2.2 Variance of a Random Variable

Definition

The variance of a random variable X, denoted as V (X), is

V (X) = E[(X − E(X))2].

Remark:

The variance of a random variable X is a measure of dispersion or
scatter in the possible values for X.

V (X) = E(X2)− [E(X)]2.
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Example 11: Let X be a random variable with the following
probability distribution

X 0 1 2 3

P 0,24 0,46 0,26 0,04

Find the variance of X.
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Properties of the Variance

1) V (C) = 0, where C is a constant.

2) V (kX) = k2V (X), where k is a constant.

3) If X,Y are independent random variables, then

V (X + Y ) = V (X) + V (Y ).

4) If X1, X2, . . . , Xn are independent random variables and
k1, k2, . . . , kn are constants, then

V (k1X1+k2X2+. . .+knXn) = k21V (X1)+k22V (X2)+. . .+k2nV (Xn).
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2.2.3 Standard Deviation of a Random Variable

Definition

The standard deviation of a random variable X is

σ(X) =
√

V (X).
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2.3.1 Binomial Distribution

Definition

A random variable X is said to have a binomial distribution with
parameters n ∈ N∗ and p ∈ (0, 1), denoted by X ∼ B(n, p), if X can
take on the values 0, 1, . . . , n and

P (X = k) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Remark: If X is the number of successes in a sequence of n Bernoulli
trials, then X ∼ B(n, p), where p is the probability of a success in each
trial.
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Example 12:

Toss a coin 5 times. Let X be the number of heads obtained
⇒ X ∼ B(5, 0.5).

A multiple choice test contains 50 questions, each with four
choices, and you guess at each question. Let X be the number of
questions answered correctly ⇒ X ∼ B(50, 1/4).

Each sample of air has a 10% chance of containing a particular rare
molecule. Let X be the number of air samples that contain the
rare molecule in the next 18 samples analyzed ⇒ X ∼ B(18, 0.1).
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Example 13: The on-line access computer service industry is growing
at an extraordinary rate. Current estimates suggest that 20% of people
with home-based computers have access to on-line services. Suppose
that 15 people with home-based computers were randomly and
independently sampled.

a) What is the probability that two of those sampled have access to
on-line services at home?

b) What is the probability that at least 1 of those sampled have
access to on-line services at home?
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Mean and Variance

If X is a binomial random variable with parameters n and p, then

E(X) = np

V (X) = np(1− p)
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Example 14: A computer system uses passwords that are exactly six
characters and each character is one of the 26 letters (a-z) or 10
integers (0-9). Suppose there are 10000 users on the system with
unique passwords. A hacker randomly selects (with replacement) one
billion passwords from the potential set in the milliseconds before
security software closes the unauthorized access.

(a) What is the distribution of the number of user passwords selected
by the hacker?

(b) What is the probability that no user passwords are selected?

(c) What is the mean and variance of the number of user passwords
selected?
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2.3.2 Poisson Distribution

The Binomial distribution describes the distribution of the number
of successes in a sequence of n trials.

The Poisson distribution focuses on the number of occurrences of
an event in an interval of time or specific region of space.

Here are several examples of Poisson random variables.

1) The number of cars arriving at a service station in 1 hour.
2) The number of flaws in a bolt of cloth.
3) The number of accidents in 1 day at a road intersection.
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Definition

A random variable X is said to have a Poisson distribution with
parameter λ (λ > 0), denoted as X ∼ P (λ), if X can take the values
0, 1, 2, . . . and

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, . . . .

Mean and Variance

If X is a Poisson random variable with parameter λ, then

E(X) = V (X) = λ.
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Note:

It is important to use consistent units in the calculation of
probabilities involving Poisson random variables.

Example of unit conversions: If the average number of accidents in
1 day at a road intersection is 0.5, then the average number of
accidents in 1 week at that road intersection is 3.5.

Example 15: The number of messages sent to a computer bulletin
board is a Poisson random variable with a mean of 5 messages per
hour. What is the probability that

(a) 5 messages are received in 1 hour?

(b) 10 messages are received in 1.5 hours?

(c) Less than two messages are received in one-half hour?
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2.3.3 Continuous Uniform Distribution

Definition

A random variable X is said to have a continuous uniform distribution
over [a; b], denoted by X ∼ U [a, b], if its probability density function is

fX(x) =


1

b− a
if x ∈ [a; b]

0 elsewhere
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Mean and Variance

If X is a continuous uniform random variable over [a, b], then

E(X) =
a+ b

2
,

V (X) =
(b− a)2

12
.
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Cumulative Distribution Function

If X is a continuous uniform random variable over [a, b], then the
cumulative distribution function of X is

FX(x) =


0 if x < a

x− a

b− a
if a ≤ x ≤ b

1 if x > b
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Example 16: The thickness of a flange on an aircraft component is
uniformly distributed between 0.95 and 1.05 millimeters.

(a) Determine the cumulative distribution function of flange thickness.

(b) Determine the proportion of flanges that exceeds 1.02 millimeters.

(c) What thickness is exceeded by 90% of the flanges?

(d) Determine the mean and variance of flange thickness.
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2.3.4 Normal Distribution

Definition

A random variable X is said to have a normal distribution with
parameters µ and σ2 (σ > 0), denoted as X ∼ N(µ, σ2), if its
probability density function is

fX(x) =
1

σ
√
2π

e
−
(x− µ)2

2σ2
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Figure 1: Normal probability density functions for selected values of the
parameters µ and σ2

Mean and Variance

If X ∼ N(µ, σ2), then E(X) = µ, V (X) = σ2.
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Standard Normal Distribution

A normal random variable with

µ = 0, σ = 1

is called a standard normal random variable, denoted as Z.

The cumulative distribution function of Z is denoted as Φ(z),

Φ(z) = P (Z ≤ z).

The values of Φ(z) are given in Appendix Table III.

In Excel, Φ(z) = NORMSDIST(z).
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Properties of the Cumulative Distribution Function Φ(z)

i) Φ(−z) = 1− Φ(z).

ii) If z ≥ 4, then Φ(z) ≈ 1.
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Example 17: Find the area under the standard normal curve that lies

a) to the left of z = −1.3

b) to the right of z = 2.5

c) between z = −1.48 and z = 2.

Example 18: Find the value of z such that

a) P (Z > z) = 0.1

b) P (−1.24 < Z < z) = 0.8

c) P (−z < Z < z) = 0.95

Note: In Excel, if Φ(z) = p, then z = NORMSINV(p).
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Standardizing a Normal Random Variable

If X ∼ N(µ, σ2) then Z =
X − µ

σ
∼ N(0, 1)

Calculating Normal Probabilities

If X ∼ N(µ, σ2), then

a) P (X < a) = Φ

(
a− µ

σ

)
b) P (a < X < b) = Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
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Example 19: The compressive strength of samples of cement can be
modeled by a normal distribution with a mean of 6000 kilograms per
square centimeter and a standard deviation of 100 kilograms per
square centimeter.

(a) What is the probability that a sample’s strength is less than 6250
Kg/cm2?

(b) What is the probability that a sample’s strength is between 5800
and 5900 Kg/cm2?

(c) What strength is exceeded by 95% of the samples?
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2.3.5 Exponential Distribution

Definition

The random variable X that equals the distance between successive
events of a Poisson process with mean λ > 0 is an exponential random
variable with parameter λ. The probability density function of X is

f(x) = λe−λx, x ≥ 0
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Mean and Variance

If the random variable X has an exponential distribution with
parameter λ, then

µ = E(X) =
1

λ
, σ2 = V (X) =

1

λ2
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Example 20: The time between calls to a plumbing supply business is
exponentially distributed with a mean time between calls of 15
minutes.

(a) What the probability that there are no calls within a 30-minute
interval?

(b) What the probability that at least one call arrives within a
10-minute interval?

(c) What the probability that the first call arrives within 5 and 10
minutes after opening?

(d) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.9?
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3.1.1 Definition of Random Vectors

Definition

A random vector of dimension n is an ordered n-tuple
(X1, X2, . . . , Xn), where X1, X2, . . . , Xn are random variables.

A random vector (X1, X2, . . . , Xn) is called discrete if
X1, X2, . . . , Xn are discrete random variables.

A random vector (X1, X2, . . . , Xn) is called continuous if
X1, X2, . . . , Xn are continuous random variables.
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3.1.2 Joint Cumulative Distribution Functions

Definition

The joint cumulative distribution function of the random variables
X1, X2, . . . , Xn is defined as follows.

FX1,X2,...,Xn(x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn),

∀x1, x2, . . . , xn ∈ R.
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Properties of the Joint Cumulative Distribution Functions

1) 0 ≤ FX1,X2,...,Xn(x1, x2, . . . , xn) ≤ 1, ∀x1, x2, . . . , xn ∈ R.
2) lim

xk→−∞
FX1,X2,...,Xn(x1, x2, . . . , xn) = 0, k = 1, 2, . . . , n.

3) lim
x1,x2,...,xn→∞

FX1,X2,...,Xn(x1, x2, . . . , xn) = 1.

4) The joint cumulative distribution function is nondecreasing in each
variable.

5) P (x1 < X ≤ x2, y1 < Y ≤ y2) =
FX,Y (x2, y2)− FX,Y (x1, y2)− FX,Y (x2, y1) + FX,Y (x1, y1).

6) lim
y→∞

FX,Y (x, y) = FX(x); lim
x→∞

FX,Y (x, y) = FY (y).

FX(x), FY (y) are called marginal cumulative distribution functions
of X and Y , respectively.
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Example 1: Let X,Y be random variables with the joint cumulative
distribution function

FX,Y (x, y) =

{
(1− e−x)(1− e−y) if x ≥ 0, y ≥ 0

0 otherwise

a) Find marginal cumulative distribution functions FX(x), FY (y).

b) Compute P (X > 1, Y > 2).
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3.2.1 Joint Probability Mass Functions and Joint
Probability Distributions

Definition

The joint probability mass function of discrete random variables X,Y
is defined by

pX,Y (x, y) = P (X = x, Y = y), ∀x, y ∈ R.

9 / 35
Nguyen Thi Minh Tam Chapter 3: Random Vectors



Let X,Y be discrete random variables. Suppose that the ranges of X
and Y are

RX = {x1, . . . , xn}, RY = {y1, . . . , ym},

respectively.

Properties of Joint Probability Mass Functions

1) pX,Y (xi, yj) ≥ 0, ∀i = 1, . . . , n;∀j = 1, . . . ,m.

2)
n∑

i=1

m∑
j=1

pX,Y (xi, yj) = 1.

3) FX,Y (x, y) =
∑
xi≤x

∑
yj≤y

pX,Y (xi, yj).
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The joint probability distribution of X and Y can be described by the
following table.

X
Y

y1 y2 . . . ym

x1 pX,Y (x1, y1) pX,Y (x1, y2) . . . pX,Y (x1, ym)

x2 pX,Y (x2, y1) pX,Y (x2, y2) . . . pX,Y (x2, ym)

· · · · · · · · · · · · · · ·
xn pX,Y (xn, y1) pX,Y (xn, y2) . . . pX,Y (xn, ym)
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3.2.2 Marginal Probability Distributions

The marginal probability distribution of X is

X x1 x2 . . . xn
P pX(x1) pX(x2) . . . pX(xn)

where

pX(xi) = P (X = xi) =

m∑
j=1

pX,Y (xi, yj), i = 1, . . . , n.
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The marginal probability distribution of Y is

Y y1 y2 . . . ym
P pY (y1) pY (y2) . . . pY (yn)

where

pY (yj) = P (Y = yj) =

n∑
i=1

pX,Y (xi, yj), j = 1, . . . ,m.

Remarks: Two discrete random variables X and Y are independent if
and only if

pX,Y (xi, yj) = pX(xi)pY (yj), ∀i = 1, . . . , n;∀j = 1, . . . ,m.
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Example 2: Let X,Y be discrete random variables with the joint
probability distribution

X
Y

0 2 3 5

-2 0.1 0.15 0.1 0

1 5k 3k 0.05 0.07

4 0 2k 0 0.13

a) Find k and compute FX,Y (3, 2).

b) Find the marginal probability distributions of X and Y . Are X
and Y independent?
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3.2.3 Conditional Probability Distributions and
Conditional Mean

Let X be a discrete random variable with possible values x1, . . . , xn
and let B be an event with P (B) > 0. Then the conditional probability
mass function of X given B is defined by

pX|B(xi) = P (X = xi|B) =
P ((X = xi) ∩B)

P (B)
.

The conditional probability distribution of X given B is

X|B x1 x2 . . . xn
P pX|B(x1) pX|B(x2) . . . pX|B(xn)

The conditional mean of X given B is defined by

E(X|B) =

n∑
i=1

xipX|B(xi).
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The conditional probability distribution of X given (Y = yj) is

X|(Y = yj) x1 x2 . . . xn
P pX|yj (x1) pX|yj (x2) . . . pX|yj (xn)

where

pX|yj (xi) = P (X = xi|Y = yj) =
P (X = xi, Y = yj)

P (Y = yj)
.

The conditional mean of X given (Y = yj) is

E(X|Y = yj) =

n∑
i=1

xipX|yj (xi).
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The conditional probability distribution of Y given (X = xi) is

Y |(X = xi) y1 y2 . . . ym
P pY |xi

(y1) pY |xi
(y2) . . . pY |xi

(ym)

where

pY |xi
(yj) = P (Y = yj |X = xi) =

P (X = xi, Y = yj)

P (X = xi)
.

The conditional mean of Y given (X = xi) is

E(Y |X = xi) =

m∑
j=1

yjpY |xi
(yj).

Remark: Two discrete random variables X and Y are independent if
and only if

pX|yj (xi) = pX(xi), pY |xi
(yj) = pY (yj),

∀i = 1, . . . , n; ∀j = 1, . . . ,m.
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Example 3: Xavier and Yvette are real estate agents. Let X denote
the number of houses that Xavier will sell in a month and let Y denote
the number of houses Yvette will sell in a month. An analysis of their
past monthly performances has the following joint probabilities.

Y
X

0 1 2

0 0.12 0.42 0.06

1 0.21 0.06 0.03

2 0.07 0.02 0.01

If Xavier sell 1 house in a month, then what is the mean number of
houses Yvette will sell in that month?
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3.3.1 Joint Probability Density Functions

Definition

The joint probability density function of continuous random variables
X,Y is the bivariate function fX,Y (x, y) ≥ 0 satisfying

FX,Y (x, y) =

x∫
−∞

y∫
−∞

fX,Y (u, v)dudv. (1)
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Properties of Joint Probability Density Functions

1) fX,Y (x, y) ≥ 0 ∀x, y ∈ R.
2) If fX,Y (x, y) is continuous on a region D ⊂ R2, then

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
, ∀(x, y) ∈ D.

3) P ((X,Y ) ∈ D) =

∫∫
D

fX,Y (x, y)dxdy if D ⊂ R2.

4)

+∞∫
−∞

+∞∫
−∞

fX,Y (x, y)dxdy = 1.
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Example 4: Let X,Y be continuous random variables with the joint
probability density function

fX,Y (x, y) =
c

(1 + x2)(1 + y2)
; x, y ∈ R.

a) Find the constant c.

b) Find the joint cumulative distribution function of X,Y .

c) Calculate P (1 < X ≤
√
3, 0 < Y ≤ 1).
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3.3.2 Marginal Probability Density Functions

The marginal probability density function of X is

fX(x) =

+∞∫
−∞

fX,Y (x, y)dy, x ∈ R.

The marginal probability density function of Y is

fY (y) =

+∞∫
−∞

fX,Y (x, y)dx, y ∈ R.

Remark: Two continuous random variables X and Y are independent
if and only if

fX,Y (x, y) = fX(x)fY (y), ∀x, y ∈ R.
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Example 5: Let X,Y be continuous random variables with the joint
probability density function

fX,Y (x, y) =

 1

6π
if

x2

9
+

y2

4
≤ 1

0 otherwise

a) Find the marginal probability density functions of X and Y .

b) Are X and Y independent?
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3.3.3 Conditional Probability Density Functions and
Conditional Mean

The conditional probability density function of Y given X = x là

fY |x(y) =
fX,Y (x, y)

fX(x)
for fX(x) > 0.

The conditional mean of Y given (X = x) is

E(Y |X = x) =

∞∫
−∞

yfY |x(y)dy.
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The conditional probability density function of X given Y = y is

fX|y(x) =
fX,Y (x, y)

fY (y)
for fY (y) > 0.

The conditional mean of X given Y = y is

E(X|Y = y) =

∞∫
−∞

xfX|y(x)dx.
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Example 6: Let X,Y be continuous random variables with the joint
probability density function

fX,Y (x, y) =

{
x+ y if 0 ≤ x, y ≤ 1
0 otherwise

a) Find the conditional probability density function fY |x(y) and
compute E(Y |X = x).

b) Find the conditional probability density function fX|y(x) and
compute E(X|Y = y).
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3.4.1 Covariance

Definition

The covariance between the random variables X and Y , denoted as
cov(X,Y ), is

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].
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The expected value of a function of two random variables is defined as
follows.

If X,Y are discrete random variables and the ranges of X and Y
are RX = {x1, . . . , xn}, RY = {y1, . . . , ym}, respectively, then

E(g(X,Y )) =

n∑
i=1

m∑
j=1

g(xi, yj)pX,Y (xi, yj)

If X,Y are continuous random variables, then

E(g(X,Y )) =

∞∫
−∞

∞∫
−∞

g(x, y)fX,Y (x, y)dxdy
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Properties of the Covariance

1) cov(X,Y ) = E(XY )− E(X)E(Y )

2) If X and Y are independent random variables, then cov(X,Y ) = 0.

3) If a, b, c, d are constants, then

cov(aX + c, bY + d) = abcov(X,Y ).

4) If a, b are constants, then

V (aX + bY ) = a2V (X) + b2V (Y ) + 2abcov(X,Y ).
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Covariance Matrix

Let (X1, X2, . . . , Xn) be a random vector. The matrix

M = [Cij ]n×n, where Cij = cov(Xi, Xj),

is called the covariance matrix of X.

Remark: The covariance matrix is symmetric.
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3.4.2 Correlation

Definition

The correlation between random variables X and Y , denoted as ρX,Y , is

ρX,Y =
cov(X,Y )√
V (X)V (Y )

.
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Properties of the Correlation

1) If X, Y are independent random variables, then ρX,Y = 0.

2) −1 ≤ ρX,Y ≤ 1.

3) ρX,Y = ±1 ⇔ there exist real numbers a ̸= 0 and b such that
Y = aX + b.

Remark: The correlation is a measure of the linear relationship
between random variables.
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Example 7: Let X,Y be discrete random variables with the joint
probability distribution

X
Y

0 2 3 5

-2 0.1 0.15 0.1 0

1 0.2 0.12 0.05 0.07

4 0 0.08 0 0.13

a) Find the correlation between X and Y .

b) Compute V (2X − 3Y ).
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4.1.1 Population

Definition

A population is a set of all items of interest.

The number of items in a population is called population size,
denoted by N .
A numerical measurement describing some characteristic of a
population is called a parameter.

4 / 23
Nguyen Thi Minh Tam Chapter 4: Sampling Theory



Example 1: In a study that is trying to determine the mean weight of
all 20-year-old males in the United States, the population would be all
20-year-old males in the United States.

Example 2: If we are studying the grade point average (GPA) of
students at Harvard, the population is the set of all the students at
Harvard.
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Each observation in a population is a value of a random variable
X having some probability distribution.
If X is normally distributed, we say that the population is
normally distributed or that we have a normal population.
Data are the observed values of a variable.
Why not study the entire population?

- It is impossible to observe every item in the population.
- It is too costly.
- Some testing is inherently destructive.
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4.1.2 Sample

Definition

A sample is a subset of a population.
The number of items in a sample is called sample size, denoted by
n (n ≪ N).
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4.1.3. Some Methods of Sampling

Random sampling
↗ without replacement
↘ with replacement

Systematic sampling.
Stratified sampling.
Cluster sampling.

8 / 23
Nguyen Thi Minh Tam Chapter 4: Sampling Theory



4.1.4 Random Sample

Before the data is collected, the observations are considered to be
random variables, say X1, X2, . . . , Xn.

Definition

The random variables X1, X2, . . . , Xn constitute a random sample of
size n if
i) the Xi’s are independent random variables,
ii) every Xi has the same probability distribution as the population.

9 / 23
Nguyen Thi Minh Tam Chapter 4: Sampling Theory



4.1.5 Describing Data

Frequency Table:
X x1 x2 . . . xk

Frequency n1 n2 . . . nk

where

x1 < x2 < . . . < xk.

ni is the number of observations having the value xi in the sample.
n = n1 + n2 + . . .+ nk.
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Let fi =
ni

n
denote the relative frequency of occurrences of the

value xi in the sample, we get the relative frequency table:
X x1 x2 . . . xk

Relative frequency f1 f2 . . . fk

If n is large, it is useful to group the data into intervals or classes.
Then data can be arranged in the following table.

Class [a0, a1) [a1, a2) . . . [ak−1, ak]

Frequency n1 n2 . . . nk

where ni the number of observations falling into the ith class.

The width of the ith class is hi = ai − ai−1.
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Note:

The classes should be of equal width.
Choose the midpoint of each class as a representative value for
that class.

The representative value for the ith class is xi =
ai−1 + ai

2
.

Grouped data are often represented graphically by histograms.
A histogram is created by drawing rectangles whose bases are the
intervals and whose heights are the frequencies.
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Example 3:
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4.2.1 Statistics

Definition

A statistic is a function of the observations in a random sample.

Remark:

A statistic is a random variable, so it has a probability
distribution.
We use statistics to make inferences about parameters.

Sampling Distribution

The probability distribution of a statistic is called a sampling
distribution.
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4.2.2 Some common Statistics

Let (X1, X2, . . . , Xn) be a random sample of size n.
The sample mean is

X =
1

n

n∑
i=1

Xi.

For a specific sample (x1, x2, . . . , xn), the sample mean is

x =
1

n

n∑
i=1

xi.
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The sample variance is

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

For a specific sample (x1, x2, . . . , xn), the sample variance is

s2 =
1

n− 1

n∑
i=1

(xi − x)2.

Remark:

s2 =
1

n− 1

 n∑
i=1

x2i −
1

n

(
n∑

i=1

xi

)2
 .
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The sample standard deviation, S, is the positive square root of
the sample variance.
For a specific sample (x1, x2, . . . , xn), the sample standard
deviation is s =

√
s2.

Example 4: A sample of 10 adults was asked to report the number of
hours they spent on the Internet the previous month. The results are
listed here.

0, 7, 12, 5, 33, 14, 8, 0, 9, 22.

Calculate the sample mean and sample variance.

18 / 23
Nguyen Thi Minh Tam Chapter 4: Sampling Theory



4.2.3 How to Compute x, s2 for Grouped Data

Let xi be the midpoint of the ith class, the data can be
represented in the form of a frequency table

xi x1 x2 . . . xk
Frequency n1 n2 . . . nk

Then

x =
1

n

k∑
i=1

nixi,

s2 =
1

n− 1

 k∑
i=1

nix
2
i −

1

n

(
k∑

i=1

nixi

)2
 ,

where n = n1 + n2 + . . . nk.
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If all classes have equal width h, the sample mean and sample
variance can be computed by using the transformation

ui =
xi − a

h
. Then

x = a+ hu; s2 = h2s2u,

where

u =
1

n

k∑
i=1

niui,

s2u =
1

n− 1

 k∑
i=1

niu
2
i −

1

n

(
k∑

i=1

niui

)2
 .
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Example 5: The data below give the weight in kilograms of 100
college students taken at random in fall 1996.

Weight (kg) 56-58 58-60 60-62 62-64 64-66 66-68 68-70
Frequency 5 8 18 36 27 4 2

Compute x, s2.
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4.2.3 Sampling Distribution of the Mean

If (X1, X2, . . . , Xn) is a random sample of size n taken from a
population with mean µ and variance σ2, then

µX = µ, σX =
σ√
n

(σX is called the standard error of the mean)
If the population is normally distributed, then X is also normally
distributed.
If the population is not normally distributed, then X is
approximately normally distributed for a sufficiently large sample
size (The Central Limit Theorem)
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5.1.1 Concepts of Point Estimation

Definition

Let (X1, X2, . . . , Xn) be a random sample of size n taken from a
population with an unknown parameter θ. If a statistic
Θ̂ = h(X1, X2, . . . , Xn) is used instead of θ, then Θ̂ is called a
point estimator of θ.

After the sample has been selected, Θ̂ takes on a particular
numerical value θ̂ called the point estimate of θ.
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Example 1: Suppose that the random variable X is normally
distributed with an unknown mean µ.

The sample mean X is a point estimator of µ.

After the sample has been selected, the numerical value x is the
point estimate of µ. Thus, if x1 = 25, x2 = 30, x3 = 29, and
x4 = 31, the point estimate of µ is

x =
25 + 30 + 29 + 31

4
= 28.75
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5.1.2 Unbiased Estimators

Definition

A statistic Θ̂ is called an unbiased estimator of the parameter θ if

E(Θ̂) = θ.

Otherwise, Θ̂ is called a biased estimator of θ.

Example 2: Suppose that X is a random variable with mean µ and
variance σ2. Let (X1, X2, . . . , Xn) be a random sample of size n from
the population represented by X. Show that the sample mean X and
sample variance S2 are unbiased estimators of µ and σ2, respectively.
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5.1.3 Efficient Estimators

Definition

If we consider all unbiased estimators of a parameter θ, the one with
the smallest variance is called an efficient estimator of θ.

If X1, X2, . . . , Xn is a random sample of size n from a normal
distribution with mean µ and variance σ2, the sample mean X is the
efficient estimator of µ.
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5.1.4 Consistent Estimators

Definition

A statistic Θ̂ is called a consistent estimator of the parameter θ if

lim
n→∞

P (|Θ̂− θ| < ε) = 1, ∀ε > 0.

We often need to estimate:

1) The mean µ of a single population.

2) The variance σ2 (or standard deviation ) of a single population.

3) The proportion p of items in a population that belong to a class of
interest.

8 / 49
Nguyen Thi Minh Tam Chapter 5: Estimation and Tests of Statistical Hypotheses



Reasonable point estimates of these parameters are as follow:

1) For µ, the estimate is µ̂ = x, the sample mean.

2) For σ2, the estimate is σ̂2 = s2, the sample variance.

3) For p, the estimate is p̂ = x/n, the sample proportion, where x is
the number of items in a random sample of size n that belong to
the class of interest.
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5.2.1 Concept of Confidence Interval

Suppose that L = L(X1, X2, . . . , Xn), U = U(X1, X2, . . . , Xn) are
two statistics from a random sample (X1, X2, . . . , Xn), θ is a
population parameter, α ∈ (0, 1).

The interval [L,U ] is called a confidence interval for θ with the
1− α level of confidence if

P (L ≤ θ ≤ U) = 1− α

U–L is called the length of the confidence interval.
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If we have selected the sample:

X1 = x1, X2 = x2, . . . , Xn = xn

and computed L = ℓ, U = u, then the 1− α confidence interval for
θ is

ℓ ≤ θ ≤ u

ℓ: Lower-confidence limit
u: Upper-confidence limit



5.2.2 Confidence Interval for a Population Mean

Problem

Find a 1–α confidence interval for a population mean µ.

Let (X1, X2, . . . , Xn) be a random sample of size n taken from the
population.

We consider the problem in three cases:

1. The population has a normal distribution with variance σ2 known.

2. The population has an arbitrary distribution, large-sample.

3. The population has a normal distribution with variance σ2

unknown.
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Case 1: The population has a normal distribution with
variance σ2 known

Use the notation zα to represent the value of Z such that the area
to its right under the standard normal curve is α; that is,

P (Z > zα) = α.

z0.05 = 1.64, z0.025 = 1.96, z0.01 = 2.33.

In Excel, zα = NORM.S.INV(1− α).
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If the population is normally distributed with mean µ and standard
deviation σ, then

Z =
X − µ

σ/
√
n

is standard normally distributed.
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P

(
−zα/2 ≤

X − µ

σ/
√
n
≤ zα/2

)
= 1− α

⇔ P

(
X − zα/2

σ√
n
≤ µ ≤ X + zα/2

σ√
n

)
= 1− α
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Case 1: The population has a normal distribution with variance
σ2 known

A 1–α confidence interval for µ is

x− zα/2
σ√
n
≤ µ ≤ x+ zα/2

σ√
n
.

Example 3: The life in hours of a 75-watt light bulb is known to be
normally distributed with σ = 25 hours. A random sample 20 bulbs
has a mean life of 1014 hours. Find a 95% confidence interval on the
mean life.
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Interpreting a Confidence Interval

Figure 1: Repeated construction of a confidence interval for µ

If an infinite number of random samples are collected and a 1− α
confidence interval for µ is computed from each sample, 100(1− α)% of
these intervals will contain the true value of µ.
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The length of a confidence interval is a measure of the precision of
estimation.

Figure 2: Error in estimating µ with x
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Determining the Sample Size

If x is used as an estimate of µ, we can be (1− α) confident that the
error |x− µ| will not exceed a specified amount E when the sample size
is

n =
(zα/2σ

E

)2

(1)

If the right-hand side of Equation (1) is not an integer, it must be
rounded up.

Example 4: How large a sample is required in Example 3 if we want
to be 95% confident that the error in estimating the mean life is less
than 5 hours.
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Case 2: The population has an arbitrary distribution,
large-sample (n > 30)

A 1–α confidence interval for µ is

x− zα/2
s√
n
≤ µ ≤ x+ zα/2

s√
n

Example 5: A random sample of 100 students from a large college
showed an average IQ score of 112 with a standard deviation of 10.
Find a 99% confidence interval for the mean IQ score of all students in
this college.
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t Distribution

Let (X1, X2, . . . , Xn) be a random sample from a normal distribution
with unknown mean µ and unknown variance σ2. The random variable

T =
X − µ

S

√
n

has a t distribution with n− 1 degrees of freedom.

Figure 3: Probability density functions of several t distributions, k is the
number of degrees of freedom
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Note:

As the number of degrees of freedom k →∞, the limiting form of
the t distribution is the standard normal distribution.

The Appendix Table V lists values of tα,k, which are the values of
the random variable T with k degrees of freedom such that
P (T > tα,k) = α.

In Excel, tα,k = T.INV.2T(2α, k).
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Case 3: The population has a normal distribution with variance
σ2 unknown

A 1–α confidence interval for µ is

x− tα/2,n−1
s√
n
≤ µ ≤ x+ tα/2,n−1

s√
n

Example 6: The nicotine contents of five cigarettes of a certain
brand, measured in milligrams, are 21, 19, 23, 19, 23. Find a 99%
confidence interval for the average nicotine content of this brand of
cigarette. Assume the population is normally distributed.
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5.2.3 Large-Sample Confidence Interval for a Population
Proportion

Approximate Confidence Interval for a Population Proportion

A 1–α confidence interval for the proportion p of items in a population
that belong to a class of interest is

p̂− zα/2

√
p̂(1− p̂)

n
≤ p ≤ p̂+ zα/2

√
p̂(1− p̂)

n

where
p̂ =

x

n

x is the number of items in the sample that belong to a class of
interest, n is the sample size.
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Example 7: Of 1000 randomly selected cases of lung cancer, 823
resulted in death within 10 years. Calculate a 95% confidence interval
on the death rate from lung cancer.
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Choice of Sample Size

If we want to be 1–α confident that the error in estimating p by p̂ is
less than E, the appropriate sample size is

n =
(zα/2

E

)2

p(1− p)

When there is no information concerning the value of p, the sample size
is

n =
(zα/2

E

)2

0.25
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Example 8: Of 1000 randomly selected cases of lung cancer, 823
resulted in death within 10 years.

(a) Using the point estimate of p obtained from the preliminary
sample, what sample size is needed to be 95% confident that the
error in estimating the true value of p is less than 0.03.

(b) How large must the sample be if we wish to be at least 95%
confident that the error is less than 0.03, regardless of the true
value of p.
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5.3.1 Statistical Hypotheses

Definition

A statistical hypothesis is a statement about the parameters of one or
more populations.

Example 9: The manager of a fast-food restaurant wants to
determine whether the waiting time to place an order has changed in
the past month from its previous population mean value of 4.5
minutes. We may express this formally as

H0 : µ = 4.5 ←− null hypothesis

H1 : µ ̸= 4.5 ←− alternative hypothesis
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In some situations, we may wish to formulate a one-sided alternative
hypothesis as in

H0 : µ = 4.5
H1 : µ > 4.5

or
H0 : µ = 4.5
H1 : µ < 4.5
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5.3.2 Tests of a Statistical Hypothesis

A procedure for deciding whether to accept or reject the null
hypothesis, based on sample data, is called a test of a statistical
hypothesis.

If reject the null hypothesis, we have strong statistical evidence
that the alternative hypothesis is correct.

If do not reject the null hypothesis, we have not proven the null
hypothesis.
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Consider Example 9, we wish to test

H0 : µ = 4.5
H1 : µ ̸= 4.5

Suppose that a sample of n = 36 orders is selected and that the
sample mean waiting time x is computed.

33 / 49
Nguyen Thi Minh Tam Chapter 5: Estimation and Tests of Statistical Hypotheses



Two possible Errors

Type I Error

Rejecting the null hypothesis H0 when it is true.

Probability of type I error:

α = P (type I error) = P (reject H0 when H0 is true)

α is called the significance level of the test.
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Type II error

Failing to reject the null hypothesis H0 when it is false.

β = P (type II error) = P (fail to reject H0 when H0 is false)

1–β is called the power of the test.
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5.3.3 General Procedure for Hypothesis Tests

1) State H0, H1.

2) Determine an appropriate test statistic.

3) Compute the value of the test statistic from the sample data.

4) State the critical region.

5) Decision: Reject H0 if the test statistic has a value in the critical
region, otherwise fail to reject H0.
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5.4.1 Tests on the Mean of a Normal Distribution

Problem

Suppose a population has a normal distribution with mean µ and
variance σ2. Test the hypotheses

H0 : µ = µ0

H1 : µ ̸= µ0 ( or H1 : µ > µ0, or H1 : µ < µ0)

Let (X1, X2, . . . , Xn) be a random sample taken from the population.

Case 1: σ2 is known

Test statistic

Z0 =
X − µ0

σ

√
n

If the null hypothesis is true, Z0 ∼ N(0, 1)
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Figure 4: The distribution of Z0 when H0 : µ = µ0 is true, with critical region
for

(a) the two-sided alternative H1 : µ ̸= µ0,

(b) the one-sided alternative H1 : µ > µ0,

(c) the one-sided alternative H1 : µ < µ0.
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For a sample x1, x2, . . . , xn, we test the hypothesis H0 : µ = µ0 as
follows

1) Compute z0 =
x− µ0

σ

√
n

2) Conclusion

Alternative hypothesis Rejection criteria

H1 : µ ̸= µ0 |z0| > zα/2
H1 : µ > µ0 z0 > zα
H1 : µ < µ0 z0 < −zα
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Example 10: Spam e-mail has become a serious and costly nuisance.
An office manager believes that the average amount of time spent by
office workers reading and deleting spam exceeds 25 minutes per day.
To test this belief, he takes a random sample of 18 workers and
measures the amount of time each spends reading and deleting spam.
The results are listed here.

35, 48, 29, 44, 17, 21, 32, 28, 34, 23, 13, 9, 11, 30, 42, 37, 43, 48

If the population of times is normal with a standard deviation of 12
minutes, can the manager infer at the 1% significance level that he is
correct?
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Case 2: σ2 is unknown, n > 30.

Test statistic

Z0 =
X − µ0

S

√
n

If the null hypothesis is true, Z0 has approximately the standard
normal distribution.

Remark: In the case of large sample sizes (n > 30), it is not necessary
to make the assumption that the population has a normal distribution.
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For a specific sample x1, x2, . . . , xn, we test the hypothesis H0 : µ = µ0

as follows

1) Compute z0 =
x− µ0

s

√
n

2) Conclusion: the same as Case 1.

Example 11: The breaking strengths of cables produced by a
manufacturer have mean 1800 lb. By a new technique in the
manufacturing process, it is claimed that the breaking strength can be
increased. To test this claim, a sample of 50 cables is tested, and it is
found that the mean breaking strength is 1850 lb with the standard
deviation 100 lb. Can we support the claim at a 0.01 level of
significance?
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Case 3: σ2 is unknown, n < 30.

Test statistic: T0 =
X − µ0

S

√
n

If the null hypothesis is true, T0 has a t distribution with n− 1
degrees of freedom.

Figure 5: The distribution of T0 when H0 : µ = µ0 is true, with critical region
for (a) H1 : µ ̸= µ0, (b) H1 : µ > µ0, and (c) H1 : µ < µ0
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For a specific sample x1, x2, . . . , xn, we test the hypothesis H0 : µ = µ0

as follows

1) Compute t0 =
x− µ0

s

√
n

2) Conclusion

Alternative hypothesis Rejection criteria

H1 : µ ̸= µ0 |t0| > tα/2,n−1

H1 : µ > µ0 t0 > tα,n−1

H1 : µ < µ0 t0 < −tα,n−1
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Example 12: The mean time for mice to die when injected with 1000
leukemia cells is known to be 12.5 days. When the injection was
doubled in a sample of 10 mice, the survival times were

10.5, 11.2, 12.9, 12.7, 10.3, 10.4, 10.9, 11.3, 10.6, 11.7

If the survival times are normally distributed, do the results suggest
that the increased dosage has decreased survivorship at the 5 %
significance level?
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5.4.2 Tests on a Population Proportion

Problem

Let p be the proportion of items in a population that belong to a class
of interest. Test the hypotheses

H0 : p = p0
H1 : p ̸= p0 ( or H1 : p > p0, or H1 : p < p0)

Suppose that a random sample of size n has been taken from the
population and that X observations in this sample belong to the
class of interest. Then P̂ = X/n is a point estimator of p.

Test statistic: Z0 =
P̂ − p0√
p0(1− p0)

√
n

If the null hypothesis is true, Z0 ≈ N(0, 1).
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For a specific sample, we test the hypothesis H0 : p = p0 as follows

1) Compute z0 =
p̂− p0√
p0(1− p0)

√
n

2) Conclusion

Alternative hypothesis Rejection criteria

H1 : p ̸= p0 |z0| > zα/2
H1 : p > p0 z0 > zα
H1 : p < p0 z0 < −zα
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Example 13: An article in Fortune (September 21, 1992) claimed that
nearly one-half of all engineers continue academic studies beyond the
B.S. degree, ultimately receiving either an M.S. or a Ph.D. degree.
Data from an article in Engineering Horizons (Spring 1990) indicated
that 117 of 484 new engineering graduates were planning graduate
study. Are the data from Engineering Horizons consistent with the
claim reported by Fortune? Use α = 0.05 in reaching your conclusions.
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