
1/14

CHAPTER 1

INTRODUCTION TO

INFORMATION SYSTEM

2/14

Reference

 This chapter refers from

the book: Introduction to

information systems,

12th edition. James A.

O'Brien. McGrow Hill,

2005.

3/14

IS framework

4/14

Components of an IS

5/14

An IS

6/14

Components of an IS

7/14

Data vs. Information

8/14

Information quality

9/14

Logical data elements

10/14

Roles of IS

11/14

Roles of IS: history

12/14

Types of IS

13/14

IS development process

14/14

Introduction to UML

15/14

IS development process

 Requirement

 Analysis

 Design

 Implementation

 Testing

16/14

Requirement

 Use case diagram

– Elements

– Relationships among elements

17/14

Use case diagram: elements

 System

 Actor

 Use case

18/14

Use case diagram: Actor (1)

 Generalization relationship

19/14

Use case diagram: Actor (2)

 Use case has one actor

20/14

Use case diagram: Actor (3)

 Use case has two actors

21/14

Use case diagram: use case (1)

 Generalization relationship

22/14

Use case diagram: use case (2)

 Include relationship

23/14

Use case diagram: use case (3)

 Extend relationship

24/14

Analysis

 Class diagram

 State diagram

 Sequence diagram

 Collaboration/communication diagram

25/14

Class diagram: elements

 Class

26/14

Class diagram: relationship (1)

 Interaction

27/14

Class diagram: relationship (2)

 Generalization

28/14

Class diagram: relationship (3)

 Aggregation vs. composition

29/14

Class diagram: relationship (4)

 Association

30/14

State diagram: elements

 Start

 State

 End

31/14

State diagram: relationship

 Change state

32/14

Sequence diagram: elements

 Actor

 View/interface/boundary class

 Control/business class

Model/entity class

33/14

Sequence diagram: event steps

 Ex: login

34/14

Communication diagram: event steps

 Ex: login

35/14

Design

 Class diagram (entity, full detail – presented)

 Database diagram

 Activity diagram

 Sequence/communication diagram (presented)

 Package diagram

 Deployment diagram

36/14

Database diagram: elements

 table

37/14

Database diagram: relationships

 1-1

 1-n

 n-n (convert to many 1-n

relationships

38/14

Activity diagram: elements

 Start

 Activity

 Action

 End

39/14

Activity diagram: relationships

 Change action

40/14

Package diagram

 Package

 sub-system

41/14

Deployment diagram

 artifact

 node

 component

1/9

Chapter 2:

Introduction of

software quality assurance

2/9

Reference

 This chapter refers from the book:

 Mastering Software Quality Assurance: Best Practices,

Tools and Techniques for Software Developers

 Introduction to Software Testing

3/9

Software Quality

4/9

Software quality is:

(1)The degree to which a system, component, or process meets specified

requirements.

 by Philip Crosby

(2)The degree to which a system, component, or process meets customer

or user needs or expectations.

 by Joseph M. Juran

Now, more closely…

Software Quality

5/9

Software quality assurance is:

A systematic, planned set of actions necessary to provide adequate

confidence that the software development process or the maintenance

process of a software system product conforms to established functional

technical requirements as well as with the managerial requirements of

keeping the schedule and operating within the budgetary confines.

SQA - Expanded Definition

6/9

(1)Assuring an acceptable level of confidence that the software will conform to

functional technical requirements.

(2)Assuring an acceptable level of confidence that the software will conform to

managerial scheduling and budgetary requirements.

(3) Initiation and management of activities for the improvement and greater

efficiency of software development and SQA activities.

The objectives of SQA activities

in Software Development

7/9

(1)Assuring an acceptable level of confidence that the software maintenance

activities will conform to the functional technical requirements.

(2)Assuring an acceptable level of confidence that the software maintenance

activities will conform to managerial scheduling and budgetary requirements.

(3) Initiate and manage activities to improve and increase the efficiency

 of software maintenance and SQA activities.

The objectives of SQA activities

in Software Maintenance (product-oriented)

8/9

Software Quality factors

9/9

The Requirements Document

• Requirement Documentation (Specification) is one of the most

important elements for achieving software quality

• Need to explore what constitutes a good software requirements

document.

• Some SQA Models suggest 11-15 factors categorized; some

fewer; some more

• Want to become familiar with these quality factors, and

• Who is really interested in them.

• The need for comprehensive software quality requirements

is pervasive in numerous case studies (see a few in this

chapter).

• (Where do the quality factors go??)

10/9

Need for Comprehensive Software Quality

Requirements

• Need for improving poor requirements documents is widespread

• Frequently lack quality factors such as: usability, reusability,

maintainability, …

• Software industry groups the long list of related attributes into what we

call quality factors. (Sometimes non-functional requirements)

• Natural to assume an unequal emphasis on all quality factors.

• Emphasis varies from project to project

– Scalability; maintainability; reliability; portability; etc.

• Let’s look at some of the categories…

11/9

Extra Thoughts

• Seems like in Software Engineering we concentrate on
capturing, designing, implementing, and deploying with
emphasis on functional requirements.

• Little (not none!) emphasis on the non-functional
requirements (quality factors).

• More and more emphasis now placed on quality factors

• Can be a critical factor in satisfying overall requirements.

• In the RUP, non-functional requirements are captured in the
Software Requirements Specification (SRS); functional
requirement usually captured in Use Case stories.

12/9

McCall’s Quality Factors

• McCall has 11 factors; Groups them into categories.

– 1977; others have added, but this still prevail.

• Three categories:

– Product Operation Factors

• How well it runs….

• Correctness, reliability, efficiency, integrity, and usability

– Product Revision Factors

• How well it can be changed, tested, and redeployed.

• Maintainability; flexibility; testability

– Product Transition Factors

• How well it can be moved to different platforms and interface

with other systems

• Portability; Reusability; Interoperability

• Since these underpin the notion of quality factors and others who have

added, reword or add one or two, we will spend time on these factors.

13/9

McCall’s Quality Factors

14/9

Product operation factors

• Correctness

• Reliability

• Efficiency

• Integrity

• Usability

How well does it run and ease of use.

15/9

McCall’s Quality Factors

Category: Product Operation Factors

1. Correctness.

• Please note that we are asserting that ‘correctness’ issues are

arising from the requirements documentation and the specification

of the outputs…

• Examples include:

– Specifying accuracies for correct outputs at, say, NLT <1% errors,

that could be affected by inaccurate data or faulty calculations;

– Specifying the completeness of the outputs provided, which can be

impacted by incomplete data (often done)

– Specifying the timeliness of the output (time between event and its

consideration by the software system)

– Specifying the standards for coding and documenting the software

system

– we have talked about this: standards and integration; Essential!!

16/9

McCall’s Quality Factors

Category: Product Operation Factors

2. Reliability Requirements. (remember, this quality factor is specified in

the specs!)

• Reliability requirements deal with the failure to provide service.

–Address failure rates either overall or to required functions.

• Example specs:

–A heart monitoring system must have a failure rate of less than one

per million cases.

–Downtime for a system will not be more than ten minutes per month

(me)

–MTBF and MTTR - old and engineering, but still applicable.

3. Efficiency Requirements. Deals with the hardware resources needed

to perform the functions of the software.

–Here we consider MIPS, MHz (cycles per second); data storage

capabilities measured in MB or TB; communication lines (usually

measured in KBPS, MBPS, or GBPS).

–Example spec: simply very slow communications…

17/9

McCall’s Quality Factors

Category: Product Operation Factors

4. Integrity – deal with system security that prevent unauthorized

persons access.

• Huge nowadays; Cyber Security; Internet security; network

 security, and more. These are certainly not the same!

5. Usability Requirements – deals with the scope of staff

resources needed to train new employees and to operate the

software system.

– Deals with learnability, utility, usability, and more. (me)

– Example spec: A staff member should be able to process n

transactions / unit time. (me)

18/9

Product revision factors

• Maintainability

• Flexibility

• Testability

Can I fix it easily, retest, version it, and deploy it

easily?

19/9

McCall’s Quality Factors

Category: Product Revision Software Factors

These deal with requirements that affect the complete range of software

maintenance activities:

– corrective maintenance,

– adaptive maintenance, and

– perfective maintenance

– KNOW THE DIFFERENCES!

• 1. Maintainability Requirements

– The degree of effort needed to identify reasons (find the problem) for

software failure and to correct failures and to verify the success of

the corrections.

– Deals with the modular structure of the software, internal program

documentation, programmer manual, architectural and detail design

and corresponding documentation

– Example specs: size of module <= 30 statements.

– Refactoring...

20/9

McCall’s Quality Factors

Category: Product Revision Software Factors

2. Flexibility Requirements – deals with resources to change (adopt)

software to different types of customers that use the app perhaps a little

differently;

– May also involve a little perfective maintenance to perhaps do a little

better due to the customer’s perhaps slightly more robust

environment.

– Different clients exercise software differently. This is big!

3. Testability Requirements –

– Are intermediate results of computations predefined to assist

testing?

– Are log files created? Backup?

– Does the software diagnose itself prior to and perhaps during

operations?

21/9

Product transition factors

• Portability

• Reusability

• Interoperability

Can I move the app to different hardware?

Interface easily with different hardware / software

systems; can I reuse major portions of the code

with little modification to develop new apps?

22/9

McCall’s Quality Factors

Category: Product Transition Software

Quality Factors

1. Portability Requirements: If the software must be ported to

different environments (different hardware, operating systems, …)

and still maintain an existing environment, then portability is a must.

2. Reusability Requirements: Are we able to reuse parts of the

app for new applications?

– Can save immense development costs due to errors found /

tested.

– Certainly higher quality software and development more

quickly results.

– Very big deal nowadays.

23/9

McCall’s Quality Factors

Category: Product Transition Software Quality Factors

3. Interoperability Requirements: Does the application need to

interface with other existing systems

–Frequently these will be known ahead of time and plans can

be made to provide for this requirement during design time.

Sometimes these systems can be quite different; different

platforms, different databases, and more

–Also, industry or standard application structures in areas can

be specified as requirements.

24/9

SQA vs Testing

25/9

Quality Assurance vs Testing

Quality Assurance Testing

26/9

Quality Assurance vs Testing

Quality Assurance

Testing

27/9

Quality Assurance

Multiple activities throughout the dev process

Development standards

Version control

Change/Configuration management

Release management

Testing

Quality measurement

Defect analysis

Training

28/9

Testing

Also consists of multiple activities

Unit testing

Whitebox Testing

Blackbox Testing

Data boundary testing

Code coverage analysis

Exploratory testing

Ad-hoc testing

…

29/9

Testing Axioms

Testing cannot show that bugs do not exist

Exhaustive testing is impossible for non-trivial applications

Software Testing is a Risk-Based Exercise. Testing is done differently in different contexts, i.e.
safety-critical software is tested differently from an e-commerce site.

Testing should start as early as possible in the software development life cycle

The More Bugs you find, the More bugs there are.

30/9

Common Error Categories

Boundary-Related

Calculation/Algorithmic

Control flow

Errors in handling/interpretting data

User Interface

Exception handling errors

Version control errors

31/9

Testing Principles

All tests should be traceable to customer requirements

The objective of software testing is to uncover errors.

The most severe defects are those that cause the program to fail to meet its requirements.

Tests should be planned long before testing begins

Detailed tests can be defined as soon as the system design is complete

Tests should be prioritised by risk since it is impossible to exhaustively test a
system.

Pareto principle holds true in testing as well.

32/9

What do we test? When do we test it?

All artefacts, throughout the development life cycle.

Requirements

Are the complete?

Do they conflict?

Are they reasonable?

Are they testable?

33/9

What do we test? When do we test it?

Design

Does this satisfy the specification?

Does it conform to the required criteria?

Will this facilitate integration with existing systems?

Implemented Systems

Does the system do what is it supposed to do?

Documentation

Is this documentation accurate?

Is it up to date?

Does it convey the information that it is meant to convey?

34/9

The Testing Process

Test Planning

Test Design and
Specification

Test Implementation (if
automated)

Test Result Analysis and
Reporting

Test Control
Management and Review

35/9

Test Planning

Test planning involves the establishment of a test plan

Common test plan elements:

Entry criteria

Testing activities and schedule

Testing tasks assignments

Selected test strategy and techniques

Required tools, environment, resources

Problem tracking and reporting

Exit criteria

36/9

Test Design and Specification

Review the test basis (requirements, architecture, design, etc)

Evaluate the testability of the requirements of a system

Identifying test conditions and required test data

Design the test cases

Identifier

Short description

Priority of the test case

Preconditions

Execution

Post conditions

Design the test environment setup (Software, Hardware, Network

Architecture, Database, etc)

37/9

Test Execution

Verify that the environment is properly set up

Execute test cases

Record results of tests (PASS | FAIL | NOT EXECUTED)

Repeat test activities

Regression testing

38/9

Result Analysis and Reporting

Reporting problems

Short Description

Where the problem was found

How to reproduce it

Severity

Priority

Can this problem lead to new test case ideas?

39/9

Test Control, Management and Review

Exit criteria should be used to determine when testing should stop.
Criteria may include:
Coverage analysis

Faults pending

Time

Cost

Tasks in this stage include
Checking test logs against exit criteria

Assessing if more tests are needed

Write a test summary report for stakeholders

40/9

Levels of Testing

User
Acceptance

Testing

System Testing

Integration Testing

Unit Testing

41/9

System Testing

Component

A

Component

B

Component

C

Database

42/9

Integration Testing

Component

A

Component

B

Component

C

Database

43/9

Unit Testing

Component

A

Component

B

Component

C

Database

44/9

SQA pllan

45/9

SQA Plan

The software quality assurance plan is one of the most important plans that

should be prepared before embarking on a software development project.

The following details are recorded in the software quality assurance plan:

1. Standards—Include coding guidelines, design guidelines, testing

guidelines, etc. selected for use in the project. These standards ensure a

minimum level of quality in software development as well as uniformity of

output from the project resources.

2. Quality control activities—Proposed activities for the project include

code walkthrough, requirements and design review, and tests (unit

testing, integration testing, functional testing, negative testing, endto-end

testing, system testing, acceptance testing, etc.).

46/9

SQA Plan

4. Procedures and events that trigger causal analysis—Include failures,

defects, and successes.

5. Audits—To analyze the exceptions in the project so that necessary

corrective and preventive actions are taken to ensure the exceptions

do not recur in the project.

6. Institute of Electrical and Electronics Engineers Standard 730—Gives

details on how to prepare a quality assurance plan, including a suggested

template.

47/9

SQA Plan

Details of the following standards should be included in the software quality

assurance plan to guide project personnel in carrying out their assignments

effectively and with the desired levels of productivity and quality:

 Coding standards for the programming languages used in the project

 Database design standards

 Graphical user interface design standards

 Test case design standards

 Testing standards

 Review standards

 Organizational process reference

48/9

SQA Plan

The following specifications of quality levels (quality metrics) for the project

should be stated in the software quality assurance plan:

 Defect injection rate

 Defect density

 Defect removal efficiency for various quality assurance activities

 Productivity for various artifacts of the project

 Schedule variances

49/9

SQA Plan

The following quality control activities proposed to be implemented in the

project should be included in the software quality assurance plan:

 Code walkthrough

 Peer review

 Formal review

 Various types of software tests that would be carried out during project

execution, which at a minimum should include the following:

▪ Unit testing

▪ Integration testing

▪ System testing

▪ Acceptance testing

50/9

SQA Plan

It also should contain the schedules for the following audits proposed for the

project:

 Periodic conformance audits

 Phase-end audits

 Investigative audits (and criteria)

 Delivery audits

51/9

Review

52/9

Review
The design document is key.

It is checked repeatedly in the development process.

Typically, reviewed many times before getting a stamp
of approval to proceed with development.

Unfortunately, we often don’t find our own errors and
thus we need others for reviews.

Different stakeholders with different viewpoints are used
in the review process.

53/9

Review
A review process is : “a process or meeting during which a work

product or set of work products is presented to project personnel,
managers, users, customers, or other interested parties for
comment or approval.” (IEEE)

Essential to detect / correct errors in these earlier work products
because the cost of errors downstream is very expensive!!

Review Choices:

Formal Design Reviews (FDR)

Peer reviews (inspections and walkthroughs)

Used especially in design and coding phase

54/9

Direct objectives – Deal with the current project

a. To detect analysis and design errors as well as subjects
 where corrections, changes and completions are required

b. To identify new risks likely to affect the project.

c. To locate deviations from templates, style procedures and
 conventions.

d. To approve the analysis or design product. Approval allows the team to
continue on to the next development phase.

Indirect objectives – are more general in nature.

a. To provide an informal meeting place for exchange of
 professional knowledge about methods, tools and techniques.

b. To record analysis and design errors that will serve as a basis for future
corrective actions. (very important)

Review objectives

55/9

Many different kinds of reviews that apply to different objectives.

Reviews are not randomly thrown together.

Well-planned and orchestrated.

Objectives, roles, actions, participation, …. Very involved tasks.

Participants are expected to contribute in their area of expertise.

Idea behind reviews is to discover problems NOT to fix them/

Typically fixed after review and ‘offline’ so to speak.

Very common to review design documents.

Thus they are usually well-prepared initially prior to review.

Review objectives

56/9

DPR – Development Plan Review

 SRSR – Software Requirement Specification Review

 PDR – Preliminary Design Review

 DDR – Detailed Design Review

 DBDR – Data Base Design Review

 TPR – Test Plan Review

 STPR – Software Test Procedure Review

 VDR – Version Description Review

 OMR – Operator Manual Review

 SMR – Support Manual Review

 TRR – Test Readiness Review

 PRR – Product Release Review

 IPR – Installation Plan Review

Important to note that a design review can take place any time an analysis

or design document is produced, regardless whether that document is a

requirement specification or an installation document.

Formal Design Reviews

57/9

Blackbox testing technique

58/9

Blackbox testing

• Blackbox testing is a technique for testing without knowing

software source code.

• Blackbox testing (also called behavioral or behavior-based

techniques) are based on an analysis of the appropriate test

basis (e.g., formal requirements documents, …).

• are applicable to both functional and non- functional testing.

• concentrate on the inputs and outputs of the test object

without reference to its internal structure.

59/9

Test Techniques

The purpose of a test technique is to help in identifying test
conditions, test cases, and test data.

The choice of which test techniques depends on a number of
factors:
Component or system complexity

Regulatory standards

Customer or contractual requirements

Risk levels and types

Available documentation

Tester knowledge and skills

Available tools

Time and budget

Software development lifecycle model

The types of defects expected in the component or system

60/9

Test Techniques (cont.)

Some techniques are more applicable to certain

situations and test levels; others are applicable to all

test levels.

When creating test cases, testers generally use a

combination of test techniques to achieve the best

results from the test effort.

The use of test techniques in the test analysis, test

design, and test implementation activities can range

from very informal (little to no documentation) to very

formal.

The appropriate level of formality depends on the context

of testing, including the maturity of test and

61/9

Blackbox test design technique

a. Equivalence Class Partitioning.

b. Boundary value analysis.

c. Decision Tables.

d. State Transition.

e. Pairwise testing.

62/9

Whitebox testing technique

63/9

White-box Testing (WBT) introduction

WBT relies on a specific algorithm, on the internal data structure of the

module to be tested, to determine if the module is performing correctly.

Therefore, WBT tester must have skills and knowledge to be able to

understand in detail about the code to be tested.

WBT usually takes a lot of time and effort

For important modules, which perform the main computation of the

system, this approach is necessary.

White box testing methods:

• Control flow testing

• Data flow testing

1/18

CHAPTER 3

REQUIREMENTS AND

ANALYSIS

2/18

REQUIREMENTS

3/18

Requirement steps

 Concept exploration

– Discover term/concepts in the application

domain

– Build the glossary list

 Business model

– Description by natural language

– Description by UML

4/18

Concept exploration

 Glossary list

– Discover: brain storming, teamwork

– Organise into glossary list

5/18

BM: natural language (1)

 Objective?

 Scope?

 How do the modules work?

 Information about objects?

 Relationships among objects?

6/18

BM: natural language (1)

 Objective

– Description about the system

 Scope

– Which type of application? (web, descktop,

mobile)

– Who can directly use the system?

– Who can indirectly use the system?

– What are the functions that each user could do?

7/18

BM: natural language (2)

 Operating in each function

– Description about the order of steps to process

in the function

– Description the information displayed in each

step

– Description the action of the user in each step

– Description all possible cases could happen after

an user action at each step

8/18

BM: natural language (3)

 Object information in the system

– Detect all entities/objects need to be managed or

used in the system

– Detect all necessary attributes for each

entity/object in the system

– Detect the data type and the value range of each

attribute of entity/object.

9/18

BM: natural language (4)

 Relationships among objects in the system

– Detect all possible quantity relationships among

entities/objects

– 1-1 relationship (zero or one, exactly one)

– 1-n relationship (zero or more, one or more)

– n-n relationship (zero or more, one or more)

10/18

BM: UML (1)

 General use case diagram (for the whole system)

 Detail use case diagram (for each function)

11/18

BM: UML (2)

 General use case diagram (for the whole system)

– Detect actors of the system

– Detect use cases for each actor

– Refine the diagram

12/18

BM: General use case (1)

 Detect actors of the system

– Input: the scope of the system by natural

language

– Each (direct/indirect) user → create an

(direct/indirect) actor

– Proposal some abstract actors if necessary

13/18

BM: General use case (1)

 Detect actors of the system

– Input: the scope of the system by natural

language

– Each (direct/indirect) user → create an

(direct/indirect) actor

– Proposal some abstract actors if necessary

14/18

BM: General use case (2)

 Detect use cases of actor

– In: the scope of the system by natural language

– Each function of an user → create an use case

for the corresponding actor

 Refine use case:

– Proposal some abstract use cases if necessary

15/18

BM: Detail use case (1)

 Extract the main use case from the general UC

 Detect related sub use cases

 Detect the relationship to the main usecase

 Description each use case

16/18

BM: Detail use case (2)

 Extract the main use case from the general UC

– Extract the actor(s) and the main use case from

the general use case diagram

– Extract the relationships among extracted

actor(s) and the extracted main UC

 Detect related sub use cases

– Input: description of the function operating in NL

– Each interface with user → propose a sub use

case

– Ignore all alerting, confirmation or simple

messages

17/18

BM: Detail use case (3)

 Detect relationships to the main UC

– For each new sub use case, detect if it has

include/extend relationship to the main UC

– Some similar use cases may have the same

abtract parent use case

 Description of use case

– Each use case has a brief description: This use

case enables who (someone) to do what

(something)

18/18

Requirement

APPLY TO THE CASE STUDY

19/18

ANALYSIS

20/18

Analysis steps

 Scenarios

 Entity class extraction

 State diagram

Module class diagram

 Sequence/communication diagram

21/18

Scenarios

 The standard scenario

– There is no error in the operation of the system

– There is no error or illogic in the manipulation of

the actor

 All exception scenarios

– In case of error or inexpected results

22/18

Entity class diagram

 Extract entity class

– Extract all nouns from all related scenarios

– Consider if the noun could represent an entity

class or not

– Detect all neccesary attribute of each entity class

 Detect relationships among entity classes

– 1-1 relationship: could be merged

– 1-n relationship: let's it be

– n-n relationship: propose more intermediate

class(es) between them, if neccesary

23/18

State diagram

 Propose states

– An interface to interact to user → a state

– Ignore simple message

 Relationships among states

– Trigger to change state: user action

24/18

Class diagram of module(1)

 Boundary/view/interface classes

– Input: all scenarios + state diagram

– An interface to interact to user or a state → a

view class

– Detect attributes of each view class:

• Input attribute

• Output attribute

• Control/redirect attribute

• Combined of them

25/18

Class diagram of module(2)

 Processing at the lower level

– Each data processing → create a method

– Detect input/output data

– Assign the method to a related entity class:

• Output related entity

• Input related entity

 Relationships among classes

– Extract all related relationships among entity

classes of the module

– Create a relationship if there are interaction

between two view classes or between a view

class and an entity class,

26/18

Sequence/communication diagram

 Scenario v.2

– The user clicks on the interface of class X

– Class X calls/requires class Y to do A

– Class Y does method A...

 Diagram

– A scenario has a diagram

– The entity classes are also control classes (have

actions/methods)

– Convert from sequence to communication

diagram

27/18

Analysis

APPLY TO THE CASE STUDY

1/9

CHAPTER 4

DESIGN

2/9

Design steps

 Design of entity classes

 Design of database

 Design of interface

 Detail design module class diagram

 Activity diagram of module

 Sequence/communication diagram

 Package diagram

 Deployment diagram

3/9

Entity class diagram at the design phase

 Input

– The entity class diagram at the analysis phase

 Process

– Add id attribute to all classes that are not

inherited from any class

– Design the datatype to all attributes

– Convert association relationships to

aggregation/composition relationships

– Add the object attributes corresponding to the

aggregation/composition relationships

4/9

Design of database (1)

 Input

– The entity class diagram of the design phase

 Process

– An entity class → create a table

– Non-object attribute of the class → attritue of the

corresponding table

– Quantity relationships between two classes →

quantuty relationships between the two

corresponding tables

• 1-1: should merged

• 1-n: let's it be

• n-n: return to the entity class diagram to correct it

5/9

Design of database (2)

 Process

– Key attributes

• Primary key: the id of the tables which have it

• Foreinger key: if tblA – tblB have an 1-n relationship

→ the tblB must have a FK which refers to the PK

of the tblA.

– Remove redondant attributes

• Doublicate attributes

• Secondary attributes

6/9

Design of interface

 Process

– An interface to interact to user

– Combination of some simple interfaces into one

– Message/dialogue/confirmation/Alert

7/9

Class diagram of module (1)

 View classes

– Input: interface design

– An interface → a view class

– Design explicite attributes view class:

• Input attribute

• Output attribute

• Control/redirect attribute

• Combined of them

– Design implicite attributes of view class

• To receive data from previous class

8/9

Class diagram of module (2)

 Processing at the lower level

– Each data processing → create a method

– Design input parameters

– Design output parameters

– Assign the method to a related DAO class:

• Output related entity

• Input related entity

 Relationships among classes

9/9

Activity diagram of module

 Process

– Processing at an interface → an activity

– Each method → action

– Consider all possible cases

10/9

Sequence/communication diagram

 Scenario v.3

– The user clicks on the interface of class X

– Class X calls/requires class Y to do A

– Class Y does method A...

 Diagram

– A scenario has a diagram

– Each method has a sub-life line

– Convert from sequence to communication

diagram

11/9

Package and deployment diagram

 Package

– Present all packages

– All classes included in each package

 Deployment

– Site of database

– Site of server(s)

– Site of client

12/9

Design

APPLY TO THE CASE STUDY

1/9

CHAPTER 5

REVIEW & TESTING

2/9

Reference

This chapter refers from the book:

Mastering Software Quality Assurance:

Best Practices, Tools and Techniques for

Software Developers

 Introduction to Software Testing

3/9

REVIEW

4/9

Reviewing steps

 The review will ensure that the documents

(specification, analysis, design, etc.) are free of

errors. Usually, we will review based on the

corresponding checklists.

 The process steps are as follows:

 Step 1: Select and develop a checklist suitable for the

type of review.

 Step 2: Review the questions in the checklist. In case

there is an error or problem, it is necessary to clearly

describe the error and request correction.

 Following slides demonstrate a checklist

5/9

Checklist for reviewing user requirements specification (1)

Question

Are the requirements in compliance with the contract?

Have all the requirements been listed?

Are there any ambiguous requirements?

Is each requirement described completely?

Have the requirements been specified consistently throughout the

document?

Can the requirements be verified?

Has any additional functionality been included beyond the scope of

the contract?

Are project management requirements included in the

requirements?

6/9

Checklist for reviewing user requirements specification (2)

Question

Is the rationale for any derived requirements satisfactory?

Are the specified external interfaces compatible?

Are the user interface requirements complete?

Can the requirements be tested? Can the requirements be used

directly for validation during acceptance testing?

Are the performance requirements adequate and feasible?

Have the security requirements been determined?

Do any requirements conflict with or duplicate other requirements?

7/9

Checklist for reviewing user requirements specification (3)

Question

Is each requirement written in clear, concise, unambiguous

language?

Is each requirement free of content and grammatical errors?

Are the time-critical functions identified, and are the timing criteria

for them specified?

Have internationalization issues been adequately addressed?

Is the format in conformance with the format in the organizational

process?

8/9

Checklist for reviewing user requirements specification (4)

Question

Are all internal cross-references to other requirements

correct?

Do the requirements provide an adequate basis for

software re- quirement specification?

Have algorithms intrinsic to the functional requirements

been defined?

Is each requirement in scope for the project?

Are all security and safety considerations properly

specified?

9/9

REVIEW

APPLY TO THE CASE STUDY

10/9

TESTING

11/9

Functional testing

• Functional testing is to ensure that the system's

functions work according to the requirements of

the specification.

12/9

Functional testing

The process steps are as follows:

• Step 1: Build a checklist of the contents to be tested for

each function (optional).

• Step 2: Write test cases

• GUI (interface)

• Function

• stream, business

• other

• Step 3: Prepare test data (if necessary)

• Step 4: perform the test and record the pass/false results. In

case of false, it is necessary to clearly describe the error

and discuss with the Programmer to correct it.

13/9

Writing test cases

• The main contents of Test case include description

of input (test purpose, execution steps, test data)

and desired result.

• One note is that some test cases below don't

require test data (e.g. interface test, action test...),

but some test cases need test data (e.g. functional

test case...).

14/9

TESTING

APPLY TO THE CASE STUDY

